
9/4/2018 FIR01-student

http://circus.ewi.utwente.nl/fir2018/FIR01.html 1/8

9/4/2018 FIR01-student

http://circus.ewi.utwente.nl/fir2018/FIR01.html 2/8

FIR Assignment 01, Getting
Started
Foundations of Information Retrieval

by Djoerd Hiemstra, Dolf Trieschnigg, and Theo Huibers

Welcome to the first assignment of Foundations of Information Retrieval. In this assignment you will: 1)

Prepare the practical work environment in docker 2) register for the practial work 3) submit your first

assignment, and 4) get started with Elasticsearch.

This tutorial contains background information in indented text blocks like this one. If you're

doing fine and you understand the assignments, then it is safe to skip the text blocks.

1. Preparation

1.1 Install Docker

For the practical work, we will use Docker. Download and install Docker community edition which can be

downloaded here: https://www.docker.com/products/docker-engine (https://www.docker.com/products/docker-

engine)

Docker allows us to all work in the same environment. With a single command you can run all

the tools you need for the practical work. We will use a single docker machine (a virtual

machine) in which 4 container are run. Each container provides an isolated environment for a

program to run. The containers can communicate using their own > network, provided by

Docker.

If you are on Linux, you will have to separately install docker-compose, see:

https://docs.docker.com/compose/install/ (https://docs.docker.com/compose/install/) . To run

docker-compose without sudo, you have to add yourseld ($USER) to the docker group as

follows: sudo gpasswd -a $USER docker. If Elasticsearch exits with the error "max

virtual memory areas is too low", then increase the maximum virtual memory size with: sudo

sysctl -w vm.max_map_count=262144

1.2 Download and run the Docker environment

Download the Docker environment for the practical work here: http://circus.ewi.utwente.nl/fir2018/docker.tgz

(http://circus.ewi.utwente.nl/fir2018/docker.tgz)

Extract the archive to its own directory. Open a terminal (Linux/Mac) or command prompt (Windows) and

navigate to the directory.

You can now start the docker environment with a single command:

docker-compose up -d

-d tells docker to run the Docker containers in the background.

9/4/2018 FIR01-student

http://circus.ewi.utwente.nl/fir2018/FIR01.html 3/8

The first time you run this command this might take some time. Docker needs some time to download the

required images. When the command (succesfully) completes, docker has three containers running:

notebook, a Jupyter notebook environment.

elasticsearch, an Elasticsearch instance.

kibana, a Kibana instance.

You can check the status of the containers with the following command

docker-compose ps

ps stands for process status

This will give a listing like this:

 Name Command State
 Ports

irpractice_elasticsearch_1 /usr/local/bin/docker-entr ... Up 0.
0.0.0:9200->9200/tcp, 9300/tcp
irpractice_kibana_1 /bin/bash /usr/local/bin/k ... Up 0.
0.0.0:5601->5601/tcp
irpractice_notebook_1 tini -- start-notebook.sh ... Up 0.
0.0.0:8888->8888/tcp

The listing shows a number of ports are forwarded to your own machine:

Elasticsearch forwards ports 9200. On this port Elasticsearch accepts REST api calls. Open

http://localhost:9200 (http://localhost:9200) to see Elasticsearch running.

Kibana forwards port 5601. Kibana provides a web interface to inspect and manage Elasticsearch

servers. Open http://localhost:5601 (http://localhost:5601) to open the Kibana interface.

Notebook forwards port 8888. On this port you can access this Jupyter notebook. Open

http://localhost:8888 (http://localhost:8888) to open Jupyter notebook. Use genomics4all as the

password.

When you are finished with your practical work, you can shut down the environment with:

docker-compose down

The directory with docker files you will find a number of folders:

esdata, this stores the Elasticsearch indices you will create during the practical work.

notebooks, containing the Jupyter notebooks you have to complete for the practical work.

notebooks/data, will be used for storing the document collection used for the practical work.

1.3 Read Elasticsearch getting started

Read "Elasticsearch: Getting Started (https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-

started.html)"

1.4 Open the Jupyter notebook

9/4/2018 FIR01-student

http://circus.ewi.utwente.nl/fir2018/FIR01.html 4/8

Open http://localhost:8888 (http://localhost:8888) in your browser (use the password genomics4all) and

open this notebook called FIR01.ipynb.

2. Register for the practical work

Use the following link to register yourself for the practical work.

Register here (http://circus.ewi.utwente.nl:8880/register)

You will receive an e-mail with your username and token you need for submitting assignments. Open

myusername.py (/edit/myusername.py) (use "File" -> "Open" from this Jupyter notebook) and set the

username and token you received by e-mail.

3. Submit your first assignment

Execute the following code to check your registration works.

In []:

import firutils

firutils.say_hi('hello!') # say hi to our server!

Our notebooks will use the programming language Python. If you do not know Python at the

moment, don't worry, we will get to that in a later assignment.

9/4/2018 FIR01-student

http://circus.ewi.utwente.nl/fir2018/FIR01.html 5/8

4. Getting started with Elasticsearch

We base our first assignment on the "Elasticsearch, reference guide

(https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html)". You can skip the

section on Installation (https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html),

because Elasticsearch is already started using Docker.

If you feel adventurous (we do not recommend this!), you can follow the Installation

(https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html) to run

Elasticsearch on your laptop without Docker. But beware, your system will now be different

from the ones of your colleagues and they might not be able to help you if you have problems

that are specific to your system, your operating system, or your Elasticsearch version.

4.1 The REST API

Elasticsearch runs its own server that can be accessed by a regular web browser as the client, for instance

by opening this link in your browser: http://localhost:9200 (http://localhost:9200).

Services on the internet usually follow the client-server model

(https://en.wikipedia.org/wiki/Client%E2%80%93server_model), where providers of a service

are called servers, and requesters of a service are called clients. Web services are identified

a by link called the Unified Resource Locator (URL). In the above URL localhost is the

name of your local machine (the guest machine), and 9200 is the port number of the

Elasticsearch service. Port numbers are used because servers might provide multiple types

of services; they might for instance also send email or show normal web pages (for which the

standard port numbers are respectively 25 and 80).

Elasticsearch will respond with something like:

{
 "name" : "epRATWu",
 "cluster_name" : "docker-cluster",
 "cluster_uuid" : "KsOTBsyeTmy6fJCcZ64d_A",
 "version" : {
 "number" : "6.2.4",
 "build_hash" : "ccec39f",
 "build_date" : "2018-04-12T20:37:28.497551Z",
 "build_snapshot" : false,
 "lucene_version" : "7.2.1",
 "minimum_wire_compatibility_version" : "5.6.0",
 "minimum_index_compatibility_version" : "5.0.0"
 },
 "tagline" : "You Know, for Search"

}

If you see this, then your Elasticsearch node is up and running. The RESTful API uses simple text or JSON

over HTTP.

9/4/2018 FIR01-student

http://circus.ewi.utwente.nl/fir2018/FIR01.html 6/8

REST, API, JSON, HTTP, that's a lot of abbreviations! It is good to be familiar with the

terminology. Let us explain: The Elasticsearch response is not (only) intended for humans. It

is supposed to be used by applications that run on the client machines, and therefore the

interface is called an Application Programming Interface (API). The API uses a format called

JSON (JavaScript Object Notation), which can be easily read by machines (and humans).

The API sends its JSON response using the same method as your web browser displays

web pages. This method is called HTTP (Hyper Text Transfer Protocol), and it is the reason

you can inspect the response in a normal web browser. APIs that use HTTP are called

RESTful interfaces. REST stands for REpresentational State Transfer, arguably one of the

simplest ways to define an API.

4.2 Kibana, cURL, and more cURL

A bit of background on hostnames in docker: When running multiple Docker containers

using docker-compose, each container has its own hostname in a local network. The docker-

compose file started three containers:

1. notebook, running a jupyter notebook at port 8888

2. elaticsearch, running an elasticsearch server instance at port 9200

3. kibana, running a kibana server instance at port 5601 The ports are all forwarded to

your local machine, that's why you can access this notebook from

http://localhost:8888 (http://localhost:8888) in your browser, and you can access

your elaticsearch instance on http://localhost:9200 (http://localhost:9200). However,

if you want to access elasticsearch from within the notebook container, you have to

use elasticsearch as the hostname. So if you start an additional terminal

container you can access elasticsearch using the hostname elasticsearch (and

not localhost!)

You can interact with your Elasticsearch service in different ways. In this first assignment we will describe

three ways. Later during the practical work we will use the Python Elasticsearch client.

1. Using the Kibana Console

2. Using cURL

3. Using cURL from a Jupyter notebook (not recommended)

Kibana

Kibana provides a web interface to interact with your Elasticsearch service. It's available from

http://localhost:5601 (http://localhost:5601). You can use Kibana to create interactive dashboards visualizing

data in your Elasticsearch indices. It also provides a console to execute Elasticsearch commands. Its

available from http://localhost:5601/app/kibana#/dev_tools (http://localhost:5601/app/kibana#/dev_tools)

Many examples from the Elasticsearch user guide can be directly executed in Kibana by clicking the VIEW

IN CONSOLE button.

cURL

CURL (https://en.wikipedia.org/wiki/CURL) is a software tool that enables you to execute HTTP method

requests from the commandline. The name originally stood for "see URL".

9/4/2018 FIR01-student

http://circus.ewi.utwente.nl/fir2018/FIR01.html 7/8

Curl is already installed in the docker notebook image. Let's open a bash terminal in the notebook container

by executing the following docker-compose command:

docker-compose exec notebook bash

This should give you a bash shell, looking something like this:

jovyan@ccd6fdce539a:~$

You can exit the shell by executing exit (and start it again executing the docker-compose command). You

can execute curl commands on this prompt, for instance retrieving the Elasticsearch state. Note you have to

use elasticsearch as the hostname:

jovyan@ccd6fdce539a:~$ curl elasticsearch:9200
{
 "name" : "epRATWu",
 "cluster_name" : "docker-cluster",
 "cluster_uuid" : "KsOTBsyeTmy6fJCcZ64d_A",
 "version" : {
 "number" : "6.2.4",
 "build_hash" : "ccec39f",
 "build_date" : "2018-04-12T20:37:28.497551Z",
 "build_snapshot" : false,
 "lucene_version" : "7.2.1",
 "minimum_wire_compatibility_version" : "5.6.0",
 "minimum_index_compatibility_version" : "5.0.0"
 },
 "tagline" : "You Know, for Search"

}

The COPY AS CURL button found in the Elasticsearch user guide gives you the curl command. Make sure

you replace localhost with the hostname elasticsearch in these commands!

cURL from this notebook

Alternatively, jupyter notebooks allow you to directly execute cURL commands (or other shell commands), by

starting a line of code with an exclamation mark (see example below). Plase be warned: when executing

commands which result in long output (for instance when indexing a large number of documents), stick to the

terminal to execute curl commands. Jupyter might freeze when handling long output from the shell.

9/4/2018 FIR01-student

http://circus.ewi.utwente.nl/fir2018/FIR01.html 8/8

In []:

! curl http://elasticsearch:9200 # note the ! before curl

4.3 Getting started with Elastic Search

From here, follow the Elasticsearch getting started guide until the "Conclusion":

1. Exploring Your Cluster

2. Modifying Your Data

3. Exploring Your Data

4. Conclusion

If you carried out all the assignments, the following questions should be easy to answer. Answer the following

questions about the bank index you created.

Q1. What is the account_number of the account with the largest balance?

In []:

import firutils
firutils.submit_largest_balance(123) # change to the id you found

Q2. How many accounts have a balance between 25000 and 45000 (including 25000 and 45000) and are

from the state "IL"?

In []:

import firutils
firutils.submit_number_of_accounts(123) # change to the number of accounts you
found

Q3. How can you make Elasticsearch only return the state attribute of the returned hits (so _source only

includes the state)?

In []:

how should you alter the query to only return the `state` of the retrieved hit
s?
query = {
 "query": { "match_all": {} },

BEGIN ANSWER
END ANSWER
}
import firutils
firutils.submit_query_state_only(query)

