
UNIVERSITY OF TWENTE.

FOUNDATIONS OF INFORMATION RETRIEVAL INTRODUCTION & HISTORY

0

Theo Huibers Djoerd Hiemstra Dolf Trieschnigg

WELCOME EVERYONE!

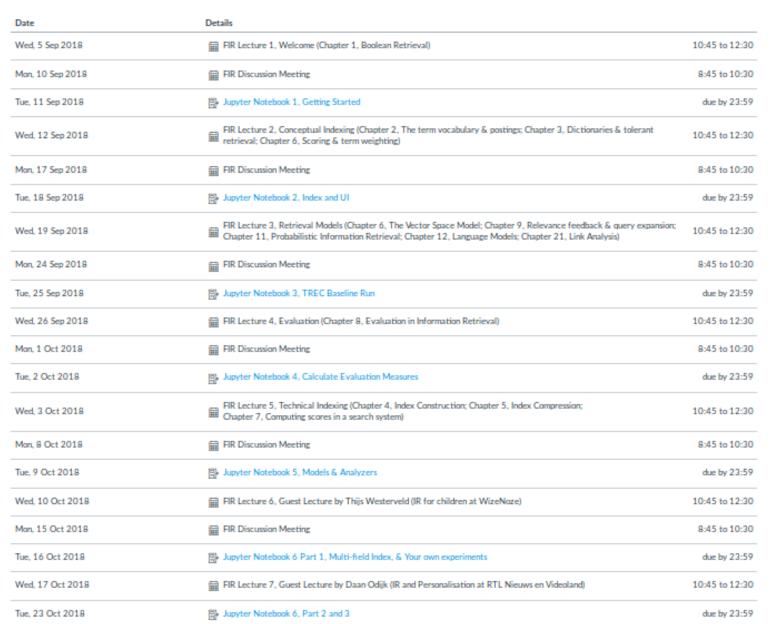
Overview

- 1) Who's who?
 - BSc before (UT / EU / Elsewhere)
 - MSc. Now? (CS / HMI / other)
 - Programming experience?
- 2) What will we do this course?
- 3) What is Information Retrieval? + History

SEARCH ENGINE TECHNOLOGY

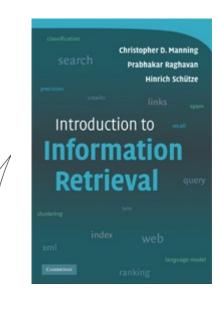
Name: Theo Huibers From: Thaesis & University of Twente

Name: Djoerd Hiemstra From: Searsia & University of Twente


INIVERSITY OF TWENTE.

Name: Dolf Trieschnigg From: Nedap & University of Twente

PROGRAM ON CANVAS https://canvas.utwente.nl/courses/1778

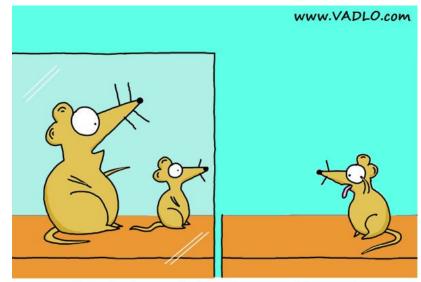

Course summary:

STUDY MATERIAL

Christopher Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, *Cambridge University Press*. ISBN 0521865719, 2008. http://informationretrieval.org

COMMUNICATION: UT MASTODON

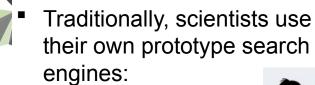
- A single channel for announcements + questions. Privacy settings per post.
- Students that are not in the course can help.
- Connect to more than 1.5 million users
- UT will not sell your data / who ads.
- Moderated (report harassment, please).
- Posts are easily searched by #FIR.



SCIENCE + PRACTICE

- Science
 - 1) Concepts
 - 2) Models
 - 3) Experimental evaluation
- Practice
 - 1) Systems
 - 2) Programming
 - 3) Experimental evaluation
- Lab rats vs. wild rats!

UNIVERSITY OF TWENTE.

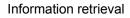


"Don't play with him, he is Wild Type."

SCIENCE + PRACTICE

- Smart
- Okapi
- Terrier
- Lemur/Indri
- Practitioners use professional engines
 - Elasticsearch
 - Solr
 - Lucene
- But ... things start to converge!

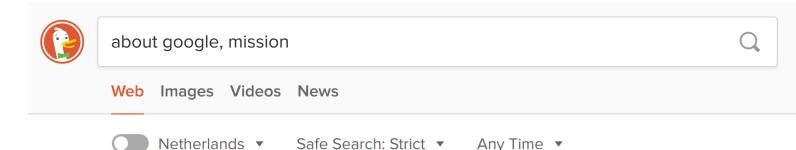
UNIVERSITY OF TWENTE.


Djoerd Hiemstra @djoerd@mastodon.social

Great! There's an Elastic4IR demoed by Guido Zuccon. #sigir2017.

August 4, 2017, 2:54 AM · Web · 🖘 0 · 🗗 2 · 🛣 0 · Open in web

INFORMATION RETRIEVAL


Information Retrieval (IR) is the scientific discipline that studies computer-based search tools.

How to distinguish a scientist from a practitioner?

WHAT IS INFORMATION RETRIEVAL?

WHAT IS INFORMATION RETRIEVAL?

About Us | Google

Google's mission is to organize the world's information and make it universally accessible and useful. Learn about our company history, products, and more.

G https://www.google.com/intl/en/about/

What is Google's vision statement? | Reference.com

Google's official **mission** or vision statement is to organize all of the data in the world and make it accessible for everyone in a useful way. **Google** also has an ...

R* https://www.reference.com/business-finance/google-s-vision-statemen...

UNIVERSITY OF TWENTE.

Information retrieval

MISSION

"Organize the world's information and make it universally accessible and useful."

What other organisations have this mission?

WHO ELSE?

- Libraries ?
- Scopus, Web of Science, ... ?
- Twitter / Facebook ?
- Netflix ?
- Amazon ?
- iTunes / Spotify ?
- Medium ?
- U. Twente Search ?

- (Google books)
- (Goolge Scholar)
- (Google Plus)
- (Google's YouTube)
- (Goole shopping)
- (Google Play Music)
- (Google Blogger)
- (Google Custom search)

A HISTORY OF "ORGANIZING THE WORLD'S INFO" (pre-history of IR)

- The Library of Alexandria
 - Built: 3rd century BC by Ptolemy I
 - Over 400,000 Papyrus scrolls
 - Visited by a.o. Euclid, Archimedes, ...
 - Burned down as Romans conquested Greeks/Egypt

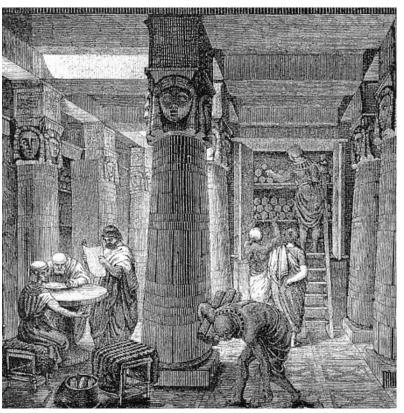


Image from Wikipedia

THE LIBRARY OF ALEXANDRIA

How did Archimedes find the right (relevant) scroll among 400,000 Papyrus scrolls ?

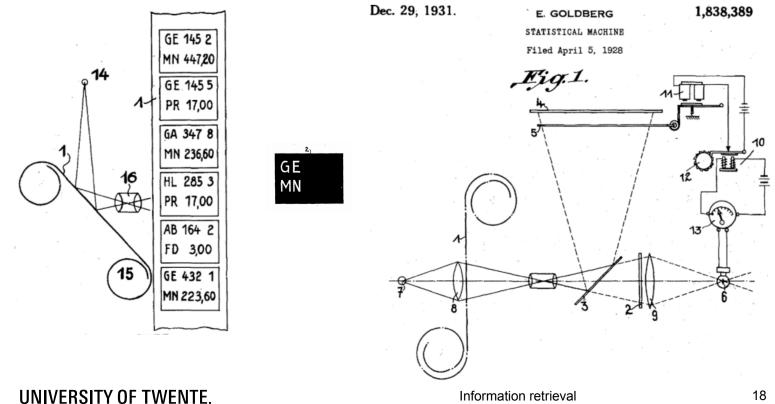
THE LIBRARY OF ALEXANDRIA

- Callimachus: poet, critic and scholar at the Library of Alexandria
- Made the **Pinakes**: considered to be the first library catalog.
- It divided works in:
 - genres & categories: rhetoric, law, epic, tragedy, comedy, lyric poetry, history, medicine, mathematics, natural science, miscellanies, ...
 - each category was alphabetized by author.

Image: allpostersimages.com

PRE-HISTORY: STANDARDS

Melvil Dewey's Decimal Classification (1876)


Hierarchical numbering scheme made up of ten classes, each divided into ten divisions, each having ten sections. Decimals create further divisions:

500 Natural sciences and mathematics 510 Mathematics 516 Geometry 516.3 Analytic geometries 516.37 Metric differential geometries 516.375 Finsler Geometry

PRE-HISTORY: FIRST MACHINES

Emanuel Goldberg's Microfilm Search "Statistical Machine" (patent 1931)

PRE-HISTORY: FIRST MACHINES

 Emanuel Goldberg's Microfilm Search "Statistical Machine" (patent 1931)

"Here it can be seen that catalogue entries were stored on a roll of film (No. 1 of the figure). A query (2) was also on film showing a negative image of the part of the catalogue being searched for; in this case the 1 st and 6 th entries on the roll. A light source (7) was shone through the catalogue roll and query film, focused onto a photocell (6). If an exact match was found, all light was blocked to the cell causing a relay to move a counter forward (12) and for an image of the match to be shown via a half silvered mirror (3), reflecting the match onto a screen or photographic plate (4 & 5)."

HISTORY: FIRST MACHINES

Calvin Mooers coined the name "Information Retrieval" (1950)

"The problem under discussion here is machine searching and retrieval of information from storage according to a specification by subject... It should not be necessary to dwell upon the

importance of information retrieval before a scientific group such as this for all of us have known frustration from the operation of our libraries – all libraries, without exception."

HISTORY: STANDARDS

 Mortimer Taube (1952)
"Unit terms": a proposal to index items by a list of keywords.

1910 - 1965

UNIVERSITY OF TWENTE.

HISTORY: EVALUATION

- Cyril Cleverdon (1960s)
- First empirical evaluation of information retrieval systems
- Measures: Precision & Recall
- Showed that using all keywords from abstract outperform manual indexing (!)

HISTORY: RANKING

Many researchers argued that *ranking* is essential

Hans Peter Luhn (1957) Similarity based in term frequencies (tf)

Karen Sparck-Jones (1972) Specificity based on inverse document frequency (idf)

Gerard Salton (1975) based on tf x idf

Keith van Rijsbergen (1975) Information Retrieval: first popular scholarly book

HISTORY: TEXT RETRIEVAL CONFERENCE (TREC)

- Development of standard reusable test collections based on Cleverdon's work (1992)
- Organized by Donna Harman and later Ellen Voorhees

HISTORY: EFFICIENCY & COMPRESSION

 Ian Witten, Alistair Moffat, and Timothy Bell, Managing Gigabytes: Compressing and Indexing Documents and Images, 1994

HISTORY: RANKING & MODELS

Modern ranking models

Stephen Robertson (1994) BM25 (with Steve Walker)

Bruce Croft (1998) Language Models (with Jay Ponte) (independently discovered by Djoerd Hiemstra and Miller, Leek & Schwartz)

Larry Page (1998) Google PageRank (with Sergey Brin)

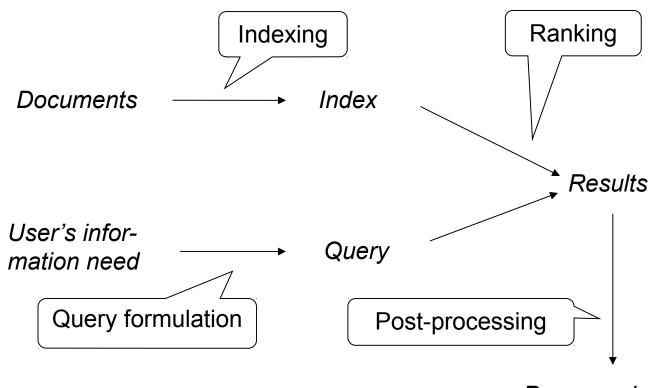
HISTORY: RANKING & MODELS

Recent developments

Machine Learning for IR: "learning to rank" "(deep) neural IR"

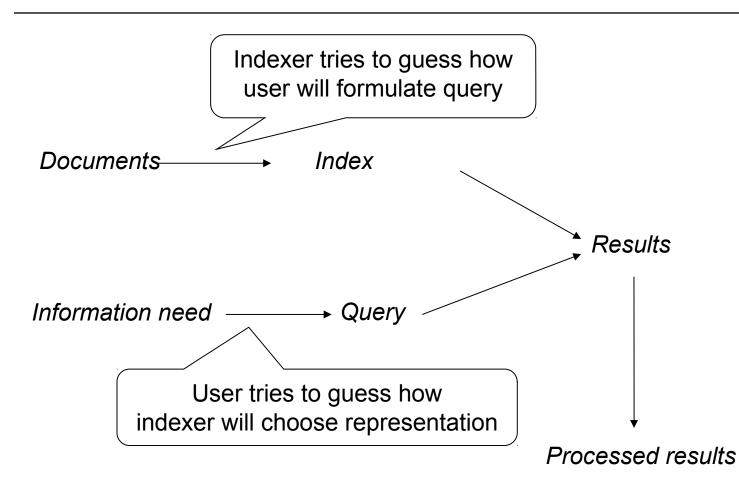
Question answering "conversational search"

FURTHER READING


Mark Sanderson and Bruce Croft, *The History of Information Retrieval Research,* Proceedings of the IEEE, Volume 100, 2012 <u>http://marksanderson.org/publications/my_papers/IEEE2012.pdf</u>

WHAT IS INFORMATION RETRIEVAL?

General characteristics:


- Users with an information need
- Documents
 - provide information, and (units part of bigger sources: sections, videos, scenes)
- A connection between the two

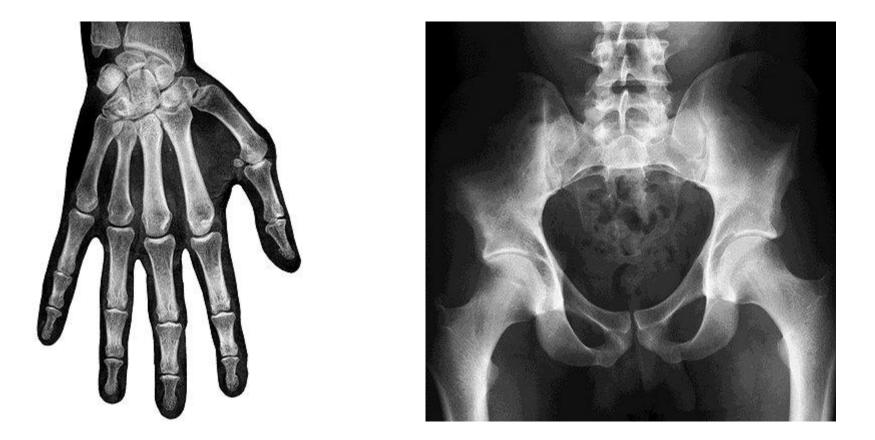
GRAPHICAL REPRESENTATION OF IR

Processed results

THE PREDICTION GAME

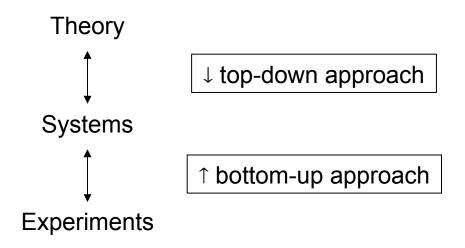
ANOTHER VIEW

- Information retrieval is search for *similarity*:
 - between a document and a query
 - between documents in a collection (clustering)
 - between users (collaborative filtering)


VARIANTS

- Pull: ad-hoc requests, like WWW-searches
 - collection static, query dynamic
- Push: filtering, like personalised news service or spam filter
 - collection dynamic, query static

MORE THAN TEXT


- Texts
 - journal articles, press releases, WWW pages, ...
- Pictures
- Audio
 - music, speeches, sounds for medical or engineering purposes, ...
- Video
- Any combination

For example: Image Retrieval Systems

IR RESEARCH

Research in IR is concerned with the design of better IR systems

Overview

- What is information retrieval?
- Approaches
- Performance
- Sources
- Course overview

Approaches: indexing

Traditionally, two styles:

- Manually by trained indexers, taking terms from pre-defined list (thesaurus)
- Automatically by deriving features like
 - words, word stems, phrases from texts
 - graphical features (colour distribution, texture etc.) from images
 - how about sounds, how about videos, how about smells?

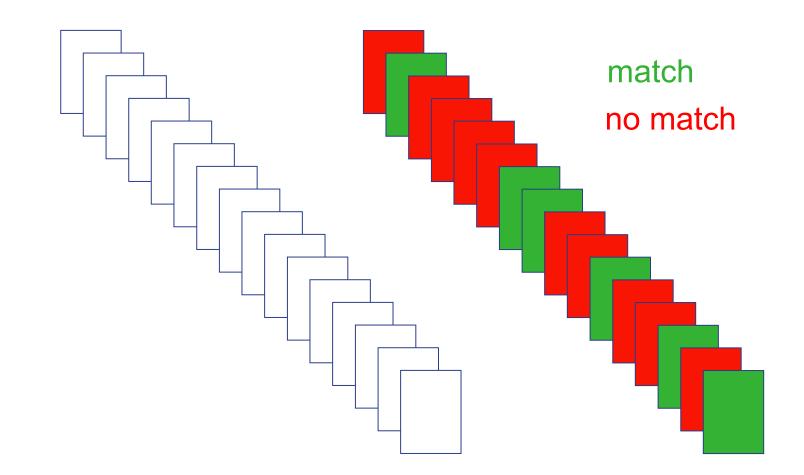
Approaches: query formulation

- Traditionally by hand
- Formulating a good query is difficult!
- Increasing attention to automated aids for query formulation
 - natural-language queries
 - relevance feedback
 - personalisation
 - recommender systems

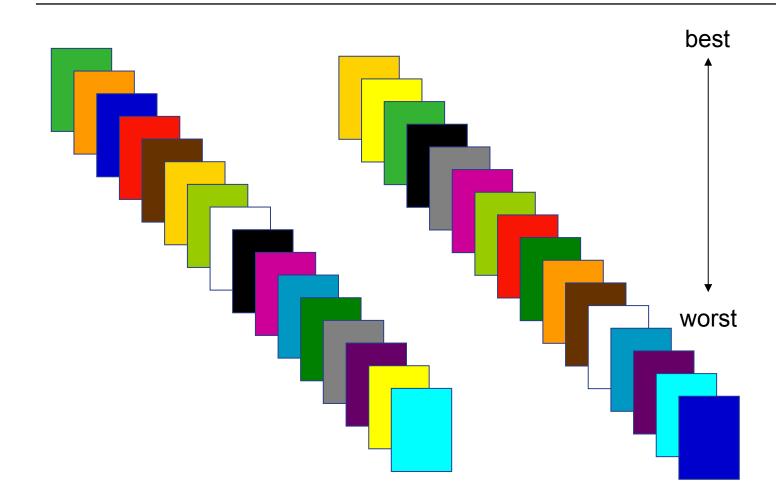
Approaches: query formulation

Other dimensions:

- Query in Italian, answer in Dutch
- Query by example: natural-language fragment, part of a picture
- Spoken query
- More expressive query languages (e.g., a description logic)
- Conversational systems


Approaches: ordering engine

Two basic approaches:


- Matching imposes a dichotomy on the collection
- Ranking rank-orders the entire collection

N.B. The set {*A*, *B*} is a dichotomy of set *C* iff *A* ∩ *B* = ∅ and *A* ∪ *B* = *C*

Matching

Ranking

Approaches: presentation

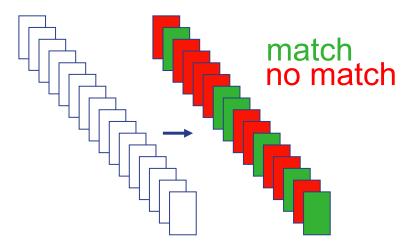
- The item as it is found in the collection
- Part of the document: a section, a paragraph, audio fragment
- A summary
- An answer to the question you posed (question-answering systems)

Overview

- What is information retrieval?
- Why information retrieval?
- Approaches
- Performance
- Sources
- Course overview

Performance

- Important decision: which system is better?
- Has large economic impact
- Compare Google's market value
- A good IR system can make the difference between winning or losing e.g.
 - a contract
 - a legal case

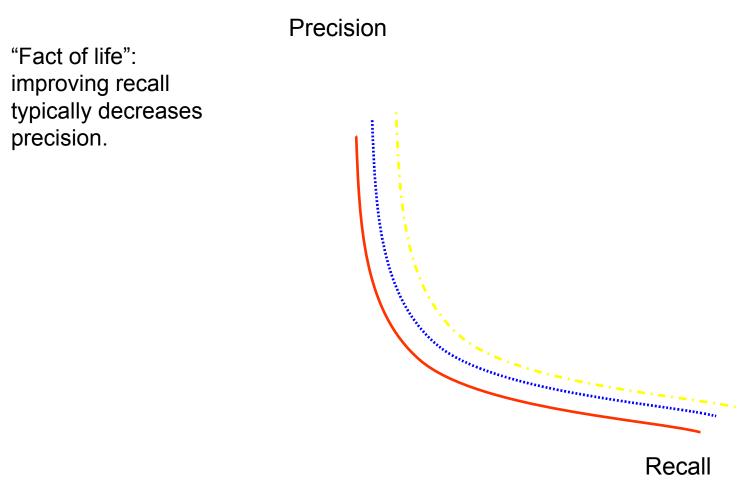

Measuring performance

Theory of measurement in IR is difficult, for example:

- Which queries are a representative sample of the population of all queries?
- Does a good measurement mean that the user is satisfied?
- What about queries that can only be answered by *combinations* of items?

Performance: matching as example

- Match / no match is a system decision
- Relevant / not relevant is a user decision
- Gives rise to familiar quadrant (compare medical tests)


erformance for m	atching System says:	
User says:	Match	No match
Relevant	True positives <i>(#TP)</i>	False negatives <i>(#FN)</i>
Not relevant	False positives <i>(#FP)</i>	True negatives <i>(#TN)</i>

UNIVERSITY OF TWENTE.

Performance for matching

precision.

Measuring performance: TREC

- Yearly competition, held in November
- Idea: demonstrate your system on unknown queries for a known, very large collection
- System with the best recall-precision performance "wins"
- Pro:
 - State of the art known
 - Competition incentive for improvement
 - Forum for exchange of ideas
- Con:
 - Test environment sets constraints on what can be done and what not

Overview

- What is information retrieval?
- Why information retrieval?
- Approaches
- Performance
- Sources
- Course overview

Sources: journals

- Information Retrieval
- Journal of the American Society for Information Science and Technology
- Information Processing & Management
- ACM Transactions on Information Systems

Sources: conferences

- ACM SIGIR conference
- WSDM: Web Search and Data Mining
- ICTIR: Int. Conf. On Theory of Information Retrieval (Amsterdam!)
- CHIR: Conf. Human Interaction IR
- ACM International Conference on Digital Libraries
- ACM Conference on Information, Knowledge and Management
- Text REtrieval Conference (not peer-reviewed but a kind of contest)
- WWW: World Wide Web Conference

The University of Twente provides access to all mentioned journals and conference proceedings.

END OF THE INTRODUCTION

Next:

- Elasticsearch and real data (TREC genomics)
- Preparing the docker image
- Introduction to Elasticsearch