
 1

How to build Google
in an afternoon

(or any other large web search engine)

Djoerd Hiemstra
http://www.cs.utwente.nl/~hiemstra

 2

Ingredients of this talk:

1. A bit of high school mathematics
2. Zipf's law
3. Indexing, query processing

Shake well…

 3

Course objectives

• Understand the scale of “things”

• Estimate index size and query time

• Index compression

• Top-k optimizations

 4

New web scale search engine

• How much money
do we need for our
startup?

 5

Dear bank,

• We budget one desktop PC
• We put the entire web index on a desktop

PC and search it in reasonable time:
 a) probably

 b) maybe

 c) no

 d) no, are you crazy?

 6

 7

 8

 9(Brin & Page 1998)

 11

Google '98: Forward & Inverted Index

 12

Google'98: Storage numbers

108.7 GBTotal With Repository

55.2 GBTotal Without Repository

3.9 GBLinks Database

9.7 GB
Document Index Incl.
Variable Width Data

6.6 GB
Temporary Anchor Data
(not in total)

293 MBLexicon

37.2 GBFull Inverted Index

4.1 GBShort Inverted Index

53.5 GBCompressed Repository

147.8 GBTotal Size of Fetched Pages

 13

Google'98: Page search

1.6 millionNumber of 404's

1.7 millionNumber of Email Addresses

76.5 millionNumber of URLs Seen

24 millionNumber of Web Pages Fetched

Web Page Statistics

 14

Google'98: Search speed

1.161.169.631.31
search
engines

0.240.204.860.25
hard
disks

1.801.663.841.77
vice
president

0.060.062.130.09al gore

Total Time(s)CPU Time(s)Total Time(s)CPUTime(s)Query

Same Query Repeated (IO
mostly cached)

Initial Query

 15

Google’s 20th birthday

 16

 17

Google’s 20th birthday

• World's largest cluster of commodity hardware
(over 1,000,000 servers)

• Over XX(?) billion web pages are indexed
– 1 trillion pages reportedly found, but not everything in

index

 18

Architecture

1. The web server sends the query
to the index servers. The content
inside the index servers is similar to
the index in the back of a book - it
tells which pages contain the words
that match the query.

2. The query travels to the doc
servers, which actually retrieve
the stored documents. Snippets
are generated to describe each
search result.

3. The search
results are
returned to the
user in a fraction
of a second.

 19

More info:

Jeff Dean's WSDM 2009 keynote:

Challenges in Building Large-Scale
Information Retrieval Systems

http://research.google.com/people/jeff/WSDM09-keynote.pdf

http://videolectures.net/wsdm09_dean_cblirs/

 20

Q1: How many bytes is
10 billion pages?

• Only the text

 ?

 21

How many bytes?

• About 10 billion pages

• Assume a page contains 500 terms on
average (ClueWeb09: about 900)

• Each term consists of 5 characters on
average

• To store the web you need:
– 1010 x 500 x 6 ~ 30 TB

 22

Ian H. Witten, Alistair Moffat, Timothy C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and

Images, 2nd edition, Morgan Kaufmann, 1999

 23

What did we ignore?

• Text statistics:
– Term frequency
– Collection frequency
– Inverse document frequency …

• Hypertext statistics:
– Ingoing and outgoing links
– Anchor text
– Term positions, proximities, sizes, and

characteristics …

 24

Q2: How fast can we scan
30 TB?

• How would you estimate this?

 ?

 25

How fast can we search 30 TB?

• We need to find a very large hard disk
– Size: 30 TB ??
– Hard disk transfer time 100 MB/s

• Time needed to sequentially scan the data:

?– 300,000 seconds …
– … so, we have to wait for 3.5 days to get the

answer to one (1) query

• We can definitely do better than that!

 26

From the book

 27

Issues that we do not address

• Web crawling
– politeness, freshness, duplicates, missing links, loops,

server problems, virtual hosts, etc.

• Maintain large cluster of servers
– Page servers: store and deliver the results of the

queries

– Index servers: resolve the queries

• Answer 100 million of user queries per day
– Caching, replicating, parallel processing, etc.

– Indexing, compression, coding, fast access, etc.

 29

Ingredients of this talk:

1. A bit of high school mathematics
2. Zipf's law
3. Indexing, query processing

Shake well…

 30

George Zipf's law

• Count how many times a
 term occurs in the collection
– call this f

• Order them in descending order
– call the rank r

• Zipf's claim:
– For each word, the product of frequency and

rank is approximatel constant: f x r = c

 31

Zipf distribution

Linear scale

Terms by rank order

Term
count

 32

Zipf distribution

Logarithmic scale
Terms by rank order

Term
count

 33

Consequences

Few terms occur very frequently: a, an, the,
… => non-informative (stop) words

• Many terms occur very infrequently:
spelling mistakes, foreign names, …

• Medium number of terms occur with
medium frequency

 34

Word resolving power

(Van Rijsbergen 79)

 35

Heap’s law for dictionary size

collection size

number of
unique
terms

 36

Ingredients of this talk:

1. A bit of high school mathematics

2. Zipf's law

3. Indexing

Shake well…

 37

Example

Nine days old6

Some like it in the pot5

Some like it hot, some like it cold4

Nine days old3

Pease porridge in the pot2

Pease porridge hot, pease porridge cold1

TextDocument number

Stop words: in, the, it.

(Witten, Moffat & Bell, 1999)

http://en.wikipedia.org/wiki/Image:Heaps_law_plot.png

 38

Inverted index

20

18

16

14

12

10

8

6

4

2

offset

4, 5

2, 5

1, 2

1, 2

3, 6

3, 6

4, 5

1, 4

3, 6

1, 4

Documents

some

pot

porridge

pease

old

nine

like

hot

days

cold

term

dictionary postings

 39

?

Q3: Estimate the size of the
inverted index

 40

Size of the inverted index

• Number of postings (term-document pairs):
– Number of documents: ~1010,

– Average number of unique terms per document
(document size ~500): ~250

– 5 bytes for each posting (why?)

– So, 1010 x 250 x 5 = 12.5 TB

– postings take about half the size of the data

 41

Size of the inverted index

• Number of unique terms is, say, 108

– 6 bytes on average

– plus off-set in postings, another 8 bytes

–

– So, 108 x 14 = 1.4 GB

– So, dictionary is tiny compared to postings (0.01 %)

 42

Inverted index encoding

• The inverted file entries are usually stored
in order of increasing document number

– [<retrieval; 7; [2, 23, 81, 98, 121, 126, 180]>

(the term “retrieval” occurs in 7 documents with
document identifiers 2, 23, 81, 98, etc.)

 43

Query processing (1)

• Each inverted file entry is an ascending
ordered sequence of integers
– allows merging (joining) of two lists in a time

linear in the size of the lists

 44

Query processing (2)

• Usually queries are assumed to be
conjunctive queries

– query: information retrieval

– is processed as information AND retrieval

[<retrieval; 7; [2, 23, 81, 98, 121, 126, 139]>

[<information; 9; [1, 14, 23, 45, 46, 84, 98, 111, 120]>

– intersection of posting lists gives:
[23, 98]

 45

Query processing (3)

• Remember the Boolean model?
– intersection, union and complement is done

on posting lists

– so, information OR retrieval

[<retrieval; 7; [2, 23, 81, 98, 121, 126, 139]>

[<information; 9; [1, 14, 23, 45, 46, 84, 98, 111, 120]>

– union of posting lists gives:
[1, 2, 14, 23, 45, 46, 81, 84, 98, 111, 120, 121, 126, 139]

 46

Q4: Estimate the time needed for
the query “information retrieval”

using the inverted file

• Assume the selectivity of terms:
– Suppose information occurs on 1 billion pages
– Suppose retrieval occurs on 10 million pages

?
Is this a reasonable estimate?

 47

Query processing (4)

• Estimate of selectivity of terms:
– Suppose information occurs on 1 billion pages
– Suppose retrieval occurs on 10 million pages

• size of postings (5 bytes per docid):
– 1 billion * 5B = 5 GB for information
– 10 million * 5B = 50 MB for retrieval

• Hard disk transfer time:
– 50 sec. for information + 0.5 sec. for retrieval
– (ignore CPU time and disk latency)

 48

Query processing (5)

• We just brought query processing down
from 3 days to just 50.5 seconds (!)

:-)

• Still... way too slow...

:-(

 49

Inverted file compression (1)

• Trick 1, store sequence of doc-ids:
– [<retrieval; 7; [2, 23, 81, 98, 121, 126, 180]>

as a sequence of gaps
– [<retrieval; 7; [2, 21, 58, 17, 23, 5, 54]>

• No information is lost.

• Always process posting lists from the beginning,
so easily decoded into the original sequence

 50

Inverted file compression (2)

• Does it help?
– maximum gap determined by the number of

indexed web pages...

– infrequent terms coded as a few large gaps

– frequent terms coded by many small gaps

• Trick 2: use variable byte length encoding.

 51

Variable byte encoding (1)

(Manning et al. 1999)

 52

Q5: Give code for x=5

 code: represent number x as:

– first bits as the unary code for

– remainder bits as binary code for

– unary part (minus 1) specifies how many bits are
required to code the remainder part

1 ⌊2 log x ⌋
x −2 ⌊ 2 log x ⌋

 53

Variable byte encoding (2)

 code: represent number x as:

– first bits as the unary code for

– remainder bits as binary code for

– unary part (minus 1) specifies how many bits are
required to code the remainder part

• For example x = 5:

– first bits: 110

– remainder: 01

1+⌊2 log x ⌋
x−2 ⌊ 2

log x ⌋

(1+⌊2 log5⌋=1+ ⌊ 2 . 32 ⌋=3)

(5−2⌊ 2
log5⌋

=5−22=1)

 54

Index sizes

(Witten, Moffat & Bell, 1999)

 55

Q6: Estimate the compressed
index size

?

 56

Index size of our search engine

• Number of postings (term-document
pairs):
– 10 billion documents

– 250 unique terms on average

– Assume on average 6 bits per doc-id

– 1010 x 250 x 6 bits ~= 1.9 TB

– about 15% of the uncompressed inverted file.

• It nicely fits one big hard drive :-)

 57

Q7: Estimate the time needed for
the query “information retrieval”

using the compressed inverted file

• Assume the selectivity of terms:
– Suppose information occurs on 1 billion pages
– Suppose retrieval occurs on 10 million pages

?

 58

Query processing on
compressed index

• size of postings (6 bits per docid):
– 1 billion * 6 bits = 750 Mb for "information"

– 10 million * 6 bits = 7.5 Mb for "retrieval"

• Hard disk transfer time:
– 7.5 sec. for information + 0.08 sec. for

retrieval

– (ignore CPU time and disk latency)

 59

Query processing – Continued (1)

• We already brought down query processing
from more than 1 day to 50.5 seconds...

• and brought that down to 7.58 seconds

:-)

• but that is still too slow...

:-(

 60

Google PageRank

• Given a document D, the documents page rank
at step n is:

 where

P(D | I) : probability that the monkey reaches page D
 through page I (= 1 / #outlinks of I)

 λ: probability that the follows a link

1λ: probability that the monkey types a url

Pn D =1− P0 D ∑
I linking to D

Pn−1 I P D∣I

TO BE DONE IN NEXT LECURE

 61

Early termination (1)

• Suppose we re-sort the document ids for each
posting such that the best documents come first
– e.g., sort document identifiers for "retrieval" by their

tf.idf values.

– [<retrieval; 7; [98, 23, 180, 81, 98, 121, 2, 126,]>

– then: top 10 documents for the query "retrieval" can
be retrieved very quickly: stop after processing the
first 10 document ids from the posting list!

– but compression and merging (multi-word queries) of
postings no longer possible...

 62

Early termination (2)

• Trick 3: define a static (or global) ranking
of all documents
– such as Google PageRank (!)

– re-assign document identifiers by ascending
PageRank

– For every term, documents with a high Page-
Rank are in the initial part of the posting list

– Estimate the selectivity of the query and only
process part of the posting files.

(see e.g. Croft, Metzler & Strohman 2009)

 63

Q8: Estimate the time when
early termination is implemented

 ?

 64

Early termination (3)

• Probability that a document contains a term:
– 1 billion / 10 billion = 0.1 for information

– 10 million / 10 billion = 0.001 for retrieval

• Assume independence between terms:
– 0.1 x 0.001 = 0.0001 of the documents contains both

terms

– so, every 1 / 0.0001 = 10,000 documents on average
contains information AND retrieval.

– for top 30, process 3,000,000 documents.

– 3,000,000 / 10 billion = 0.0003 of the posting files

 65

Query processing on compressed
index with early termination

• process about 0.0003 of postings:
– 0.0003 * 750 Mb = 225 kb for information

– 0.0003 * 7.5 Mb = 2.25 kb for retrieval

• Hard disk transfer time:
– 2 msec. for information + 0.02 msec. for

retrieval

– (NB now, ignoring CPU time, disk latency and decom-
pressing time is no longer reasonable, so it is likely

that it takes some more time)

 66

Query processing on compressed
index with early termination

• process about 0.0003 of postings:
– 0.0003 * 750 Mb = 225 kb for information

– 0.0003 * 7.5 Mb = 2.25 kb for retrieval

• Hard disk transfer time:
– 2 msec. for information + 0.02 msec. for

retrieval

– (NB now, ignoring CPU time, disk latency and decom-
pressing time is no longer reasonable, so it is likely

that it takes some more time)

 67

Query processing – Continued (2)

• We just brought query processing down
from more than 3.5 days to about 2 ms. !

:-)

“This engine is incredibly, amazingly,
ridiculously fast!”

(from “Top Gear”)

 68

Indexing - Recap

• Inverted files
– dictionary & postings

– merging of posting lists

– delta encoding + variable byte encoding

– static ranking + early termination

• Put the entire web index on a desktop PC and
search it in reasonable time:

 a) probably

 69

Ingredients of this talk:

1. A bit of high school mathematics

2. Zipf's law

3. Indexing

Shake well…

 70

Summary

• Search engines
– Google: first steps and now

• Indexing techniques (inverted files)
– How to index the web

• Compression, coding, and optimization
– How to search terabytes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

